17,318 research outputs found

    Boundary-layer turbulence in experiments of quasi-Keplerian flows

    Full text link
    Most flows in nature and engineering are turbulent because of their large velocities and spatial scales. Laboratory experiments of rotating quasi-Keplerian flows, for which the angular velocity decreases radially but the angular momentum increases, are however laminar at Reynolds numbers exceeding one million. This is in apparent contradiction to direct numerical simulations showing that in these experiments turbulence transition is triggered by the axial boundaries. We here show numerically that as the Reynolds number increases turbulence becomes progressively confined to the boundary layers and the flow in the bulk fully relaminarizes. Our findings support that turbulence is unlikely to occur in isothermal constant density quasi-Keplerian flows.Comment: 16 pages, 8 figures. Accepted for publication in Journal of Fluid Mechanic

    A Direct Reputation Model for VO Formation

    No full text
    We show that reputation is a basic ingredient in the Virtual Organisation (VO) formation process. Agents can use their experiences gained in direct past interactions to model other’s reputation and deciding on either join a VO or determining who is the most suitable set of partners. Reputation values are computed using a reinforcement learning algorithm, so agents can learn and adapt their reputation models of their partners according to their recent behaviour. Our approach is especially powerful if the agent participates in a VO in which the members can change their behaviour to exploit their partners. The reputation model presented in this paper deals with the questions of deception and fraud that have been ignored in current models of VO formation

    Extended Derivative Dispersion Relations

    Get PDF
    It is shown that, for a wide class of functions with physical interest as forward scattering amplitudes, integral dispersion relations can be replaced by derivative forms without any high-energy approximation. The applicability of these extended derivative relations, in the investigation of forward proton-proton and antiproton-proton elastic scattering, is exemplified by means of a Pomeron-Reggeon model with totally nondegenerate trajectories.Comment: 7 pages, 1 figure, contribution to "Sense of Beauty in Physics", Miniconference in Honor of Adriano Di Giacomo on his 70th Birthday, Pisa, Italy, Jan. 26-27, 200

    Derivative dispersion relations above the physical threshold

    Get PDF
    We discuss some formal and practical aspects related to the replacement of Integral Dispersion Relations (IDR) by derivative forms, without high-energy approximations. We first demonstrate that, for a class of functions with physical interest as forward scattering amplitudes, this replacement can be analytically performed, leading to novel Extended Derivative Dispersion Relations (EDDR), which, in principle, are valid for any energy above the physical threshold. We then verify the equivalence between the IDR and EDDR by means of a popular parametrization for total cross sections from proton-proton and antiproton-proton scattering and compare the results with those obtained through other representations for the derivative relations. Critical aspects on the limitations of the whole analysis, from both formal and practical points of view, are also discussed in some detail.Comment: Final version, published in Brazilian Journal of Physics, V. 37, 358 (2007

    \phi K^{+}K^{-} production in electron-positron annihilation

    Full text link
    In this work we study the e^{+}e^{-}\to\phi K^{+}K^{-} reaction. The leading order electromagnetic contributions to this process involve the \gamma*\phi\ K^{+}K^{-} vertex function with a highly virtual photon. We calculate this function at low energies using R\chi PT supplemented with the anomalous term for the VV'P interactions. Tree level contributions involve the kaon form factors and the K*K transition form factors. We improve this result, valid for low photon virtualities, replacing the lowest order terms in the kaon form factors and K*K transition form factors by the form factors as obtained in U\chi PT in the former case and the ones extracted from recent data on e^{+}e^{-}\to KK* in the latter case. We calculate rescattering effects which involve meson-meson amplitudes. The corresponding result is improved using the unitarized meson-meson amplitudes containing the scalar poles instead of the lowest order terms. Using the BABAR value for BR(X\to \phi f_{0})\Gamma (X\to e^{+} e^{-}), we calculate the contribution from intermediate X(2175). A good description of data is obtained in the case of destructive interference between this contribution and the previous ones, but more accurate data on the isovector K*K transition form factor is required in order to exclude contributions from an intermediate isovector resonance to e^{+}e^{-}\to \phi\ K^{+}K^{-} around 2.2 GeV.Comment: 21 pages, 17 figures. Revised version to appear in Phys. Rev. D. Contributions of intermediate X(2175) included. Extraction of form factors update

    Columnar defects acting as passive internal field detectors

    Get PDF
    We have studied the angular dependence of the irreversible magnetization of several YBa2_2Cu3_3O7_7 and 2H-NbSe2_2 single crystals with columnar defects tilted off the c-axis. At high magnetic fields, the irreversible magnetization Mi(ΘH)M_i(\Theta_H) exhibits a well known maximum when the applied field is parallel to the tracks. As the field is decreased below H∼0.02Hc2H \sim 0.02 H_{c2}, the peak shifts away from the tracks' direction toward either the c-axis or the ab-planes. We demonstrate that this shift results from the misalignment between the external and internal field directions due to the competition between anisotropy and geometry effects.Comment: 5 figure

    Charge transfer during individual collisions in ice growing by riming

    Get PDF
    The charging of a target by riming in the wind was studied in the temperature range of (-10, -18 C). For each temperature, charge transfers of both signs are observed and, according to the environmental conditions, one of them prevails. The charge is more positive as the liquid water concentration is increased at any particular temperature. It is found that even at the low impact velocities used (5 m/s) there is abundant evidence of fragmentation following the collision

    Cage-size control of guest vibration and thermal conductivity in Sr8Ga16Si30-xGex

    Full text link
    We present a systematic study of thermal conductivity, specific heat, electrical resistivity, thermopower and x-ray diffraction measurements performed on single-crystalline samples of the pseudoquaternary type-I clathrate system Sr8Ga16Si30-xGex, in the full range of 0 < x < 30. All the samples show metallic behavior with n-type majority carriers. However, the thermal conductivity and specific heat strongly depend on x. Upon increasing x from 0 to 30, the lattice parameter increases by 3%, from 10.446 to 10.726 A, and the localized vibrational energies of the Sr guest ions in the tetrakaidekahedron (dodecahedron) cages decrease from 59 (120) K to 35 (90) K. Furthermore, the lattice thermal conductivity at low temperatures is largely suppressed. In fact, a crystalline peak found at 15 K for x = 0 gradually decreases and disappears for x > 20, evolving into the anomalous glass-like behavior observed for x = 30. It is found that the increase of the free space for the Sr guest motion directly correlates with a continuous transition from on-center harmonic vibration to off-center anharmonic vibration, with consequent increase in the coupling strength between the guest's low-energy modes and the cage's acoustic phonon modes.Comment: 7 pages, 7 figures, submitted to PR
    • …
    corecore